5x2 x 6x4

$$6x^{4} = 5 \times x^{2} \times 6 \times x^{4}$$

$$= 5 \times 6 \times x^{2} \times x^{4}$$

$$= 30 \times x^{2+4}$$

$$= 30x^{6}$$

(d)
$$x^3y^2 \times x^6y^5 = x^3 \times y^2 \times x^6 \times y^5$$

= $x^3 \times x^6 \times y^2 \times y^5$
= $x^{3+6} \times y^{2+5}$
= x^9y^7

the multiplication law of indices to lify each of the following.

$$7 \times 3^2$$

(b)
$$9^8 \times 9^4$$

$$12^5 \times 12^7$$

(d)
$$x^5 \times x^3$$

$$c^8 \times c^6$$

(f)
$$p^4 \times p^9$$

the multiplication law of indices to lify each of the following.

$$2x^3 \times x^7$$

(b)
$$m^3 \times 5m^8$$

(c)
$$y \times 9y^{12}$$

(d)
$$3x^4 \times 5x^3$$

(e)
$$3a \times 5a$$

(f)
$$5k^4 \times 5k^4$$

3. Use the multiplication law of indices to simplify each of the following.

(a)
$$x^3 v^4 \times x^5$$

(b)
$$h^7 k^5 \times k$$

(c)
$$x^3y^7 \times x^2y^4$$

(d)
$$h^4k^6 \times h^5k^6$$

(e)
$$p^6 q^3 \times p^6 q^3$$

$$(\mathbf{f}) \ h^2 k^5 \times h^5 k$$

(a)
$$x^3y^4 \times x^5$$
 (b) $h^7k^5 \times k^{12}$
(c) $x^3y^7 \times x^2y^4$ (d) $h^4k^6 \times h^5k^5$
(e) $p^6q^3 \times p^6q^3$ (f) $h^2k^5 \times h^5k^2$
(g) $6x^3y^5 \times x^7y^2$ (h) $h^4k^7 \times 8h^2k^6$

(h)
$$h^4 k^7 \times 8h^2 k^6$$

mple 3

Division Law of Indices

(a)
$$a^5 \div a^2$$
;

$$(b) \ a^7 \div a^3.$$

$$\times a \times a \times a \times$$

$$\frac{a \times a \times a \times a}{a \times a}$$

$$\frac{5 \text{ factors}}{2 \text{ factors}}$$

$$5 - 2 = 3$$
 factors

(b)
$$a^7 \div a^3$$

$$= \frac{a \times a \times a \times a \times a \times a \times a}{a \times a \times a} \qquad \frac{7 \text{ factors}}{3 \text{ factors}}$$

$$= a \times a \times a \times a$$

$$= a^4$$

$$7 - 3 = 4 \text{ factors}$$

In general,
$$a^m \div a^n = \underbrace{\frac{a \times a \times a \times ... \times a}{a \times a \times a \times ... \times a}}_{n \text{ times}} \frac{m \text{ factors}}{n \text{ factors}}$$

$$= a \times a \times a \dots \times a$$

$$= a^{m-n} \text{ where } m > n$$

xample 4

Simplify each of the following.

(a)
$$8^9 \div 8^2$$

$$(c) 12h^6 \div 4h^2$$

$$(b) \ x^8 \div x^4$$

$$(b) x^8 \div x^4$$

$$(d) x^3 y^7 \div x y^3$$

(a)
$$8^9 \div 8^2 = 8^{9-2}$$

= 8^7

(c)
$$12h^6 \div 4h^2 = \frac{{}^3 \cancel{12}h^6}{\cancel{4}h^2} = \frac{3h^6}{h^2}$$

= $3h^{6-2}$
= $3h^4$

(b)
$$x^8 \div x^4 = x^{8-4}$$

= x^4

(d)
$$x^3y^7 \div xy^3 = x^{3-1}y^{7-3}$$

= x^2y^4

1. Simplify the following, giving your answer in index form.

(a)
$$8^9 \div 8^3$$

(b)
$$15^{16} \div 15^{8}$$
 (d) $x^{7} \div x^{4}$

(c)
$$3^{15} \div 3^3$$

(e) $n^6 \div n$

$$(\mathbf{f}) \ \ y^{12} \div y^6$$

2. Simplify each of the following.

(a)
$$8x^4 \div 2$$

(b)
$$16x^7 \div 4x^3$$

(a)
$$6x \cdot 2$$

(c) $28y^9 \div 4y^3$

(d)
$$21y^{14} \div 3y^7$$

(e)
$$32x^5 \div 4x^3$$

(f)
$$36x^{12} \div 6x^6$$

3. Simplify each of the following.

(a)
$$\frac{x^2y^5}{xy^2}$$

(b)
$$\frac{6x^5y^7}{3x^2y^4}$$

$$(\mathbf{c}) \quad \frac{20 \, p^{10} \, q^8}{5 \, p^5 q^4}$$

(c)
$$\frac{20 p^{10} q^8}{5 p^5 q^4}$$
 (d) $49h^7 k^4 \div 7hk^2$
(e) $36x^8 y^6 \div 9x^6 y$ (f) $18x^{18} y^{16} \div 2x^6 y^3$

(e)
$$36x^8y^6 \div 9x^6y$$

(f)
$$18x^{18}y^{16} \div 2x^6y^3$$

- 1. Express each of the following in its simplest index form.
 - (a) $(5^3)^4$
- **(b)** $(6^4)^5$
- (c) $(n^9)^4$
- (d) $(y^8)^7$
- 2. Express each of the following in its simplest form.
 - **(a)** $(a^3)^4 \times a^7$
- **(b)** $y^3 \times (y^4)^2$
- (c) $x \times (x^4)^5$
- **(d)** $(x^5)^4 \div x^3$
- **(e)** $(t^2)^3 \div t$ **(g)** $(a^3)^6 \div (a^2)^4$
- (f) $(h^5)^5 \div h^{12}$ (h) $(x^7)^5 \div (x^4)^8$
- 3. Simplify each of the following giving your answer in its simplest index form.
 - (a) $(3x)^3$
- **(b)** $(x^2y)^3$
- (c) $(5x^3)^2$
- **(d)** $(x^5y^4)^4$
- (e) $(3hk^2)^3$
- **(f)** $(7a^5b^7)^2$
- 4. Express each of the following as a power of a single number.
 - (a) $2^5 \div 3^5$
- **(b)** $7^4 \div 3^4$
- (c) $14^5 \div 7^5$
- (d) $3^9 \times 5^9$
- (e) $4^8 \times 7^8$
- **(f)** $5^7 \times 6^7$

- 5. Simplify each of the following, giving Howev answer in index form. (a) $(8x^4)^2 \times 2x^5$
 - **(b)** $81x^{10} \div (3x^2)^3$
 - (c) $2(a-b)^9 \times (a-b)^6$
 - **(d)** $(32ab^3)^2 \div 64ab^5$
 - (e) $15(2a+b)^{12} \div 3(2a+b)^3$
 - **(f)** $(a^2b^3)^5 \times (3ab^2)^3$
 - (g) $(4x^5y^4)^3 \div (2x^3y^2)^5$
 - **(h)** $\frac{(2x^2y)^3}{(10xy^3)^2} \times \frac{(5xy^4)^3}{4xy}$
 - (i) $\frac{8x^8y^4}{(2xy^2)^2} \times \frac{(4x^2y^2)^2}{(3xy)^2}$
 - (j) $\frac{(2xy^2)^5}{(4x^2y)^2(xy^3)}$

Zero and Negative Indices

The laws for positive integral indices can be extended so that we can give meanings to zero and negative integral indices.

(a)
$$5^3 \div 5^3$$
;

(b)
$$8^2 \div 8^2$$

By defi

 $5^3 \div 5^3$

There

By de

By e

82 ÷

The

(c)
$$\left(\frac{2}{3}\right)^{-2} \times \left(\frac{5}{4}\right)^{0} = \frac{1}{\left(\frac{2}{3}\right)^{2}} \times 1$$

$$= \frac{1}{\frac{4}{9}}$$

$$= \frac{9}{4}$$

$$= 2\frac{1}{4}$$

(d)
$$(3^{-2})^3 \times (9^{-3})^{-2} = 3^{-6} \times 9^6$$

= $3^{-6} \times (3^2)^6$
= $3^{-6} \times 3^{12}$
= 3^{-6+12}
= 3^6
= 729

In (c) above, we can also get:
$$\left(\frac{2}{3}\right)^{-2} = \frac{1}{\left(\frac{2}{3}\right)^2} = \left(\frac{1}{\frac{2}{3}}\right)^2$$
$$= \left(\frac{3}{2}\right)^2$$

From this, can you deduce any general formula for the negative powers of a fraction?

Try more questions to check your conclusion.

- 1. Simplify the following, giving your answers in positive indices only:
 - (a) $3^7 \times 3^{-12}$ (b) $8^9 \div 8^{15}$ (c) $9^8 \div 9^{-4}$ (d) $6^0 \div 6^5$

- (e) $7^{-4} \times 7^{-5}$. (f) $(5^{-4})^3$ (g) $(9^{-2})^{-4}$. (h) $(a^2)^{-3}$ (i) $(a^{-2})^4 \div a^3$. (j) $2a^{-5} \div 7b^{-5}$

Simplify the following, giving your answers in negative indices only:

(a)
$$6^4 \times 6^{-2}$$

(b)
$$7^8 \div 7^4$$

(c)
$$5^0 \times 5^{-4}$$

(d)
$$(3^{-2})^{-4}$$

(e)
$$(8^{-4})^6$$

$$(\mathbf{f}) \ a^2 \times b^3$$

(2)
$$ab^2 \div ab^3$$

(1) $a^2 \div a^5$

(h)
$$(a^2b)^3$$

(j) $abc \div a^5b^4c^2$

Evaluate each of the following:

(b)
$$3^{-4}$$

(c)
$$\left(\frac{-1}{4}\right)^2$$

(d)
$$\left(\frac{2}{3}\right)^{-3}$$

(e)
$$\left(\frac{2}{9}\right)^0$$

$$(\mathbf{f}) \left(\frac{-2}{5}\right)^{-3}$$

(g)
$$3^2 \times 4^{-3}$$

(h)
$$(3^2)^5 \div 9^3 \times 27^{-1}$$

(i)
$$\left(\frac{3}{4}\right)^{-1} \times \left(\frac{3}{7}\right)^{0}$$
 (j) $\left(\frac{2}{7}\right)^{-3} \times 49^{-1}$

(j)
$$\left(\frac{2}{7}\right)^{-3} \times 49^{-1}$$

4. Simplify the following:

(a)
$$a^3 \times a^0$$

(b)
$$a^2 \times a^{-5}$$

(c)
$$x^7 \div x^{-5}$$

(c)
$$x \div x$$

(d) $x^{-2} \div x^{-5}$

(e)
$$x^{-3} \div x^2$$

(f)
$$x \div x$$

(f)
$$x^{-4} \div x^{-7} \div x^2$$

(g) $a^{500} \div a^{-600}$

(h)
$$(x^0)^{-7}$$

(i)
$$(x^2yz)^4 \div (xyz)^7$$

(**j**)
$$(pqr^2)^{-2} \div (p^2r^2q)^{-5}$$

Fractional Indices

we have seen that the laws of indices hold true for integral indices. We shall now find a meaning where n is a fraction or rational number, and a is positive. We certainly hope that all the laws of also hold true for rational indices.

Legistrue for fractional indices. Hence we have

$$a^{\frac{1}{2}} \times a^{\frac{1}{2}} = a^{\frac{1}{2} + \frac{1}{2}} = a^{1} = a$$

$$a^{\frac{1}{2}} \times a^{\frac{1}{2}} = (a^{\frac{1}{2}})^2$$
.

$$(a^{\frac{1}{2}})^2 = a.$$

1849

 7×10^{9}

tion in 1749

Excress the following in the form 10^n , where an integer.

$$\frac{10^{12}}{10^{-6} \div 10^{-6}}$$

$$\frac{10^{12}}{10^{-6} \div 10^{-6}} \qquad \textbf{(b)} \quad \frac{10^9 \times 10^{-7}}{10^{-5}}$$

$$\frac{10^{-4}}{10^{-7} \times 10^{-3}}$$

$$\frac{10^{-4}}{10^{-7} \times 10^{-3}} \qquad (d) \quad \frac{10^{-6} \times 10^{-7}}{10^{-14} \times 10^{2}}$$

$$\frac{10^{-3} \times 10^{15}}{10^{-7} \div 10^{-28}} \qquad (f) \quad \frac{10^{12} \div 10^{-9}}{10^{-7} \div 10^{-16}}$$

$$\frac{10^{-3} \times 10^{15}}{10^{-7} \div 10^{-28}}$$

(f)
$$\frac{10^{12} \div 10^{-9}}{10^{-7} \div 10^{-16}}$$

The standard numbers in the standard

- 912 400
- **(b)** 28 000 000
- 0.043 5
- (d) 0.000 77
- 0.008 306
- **(f)** 0.296
- 74.8
- **(h)** 70 600

Express the following in ordinary notation.

- 6.37×10^3
- **(b)** 4.213×10^{-3}
- 8.1×10^{-5}
- (d) 1.729×10^4
- 3.82×10^{-1} $3(4.7 \times 10^{-2})$
- **(f)** 9.8×10^6 **(h)** $0.7(1.2 \times 10^3)$

- (i) $\frac{3.6 \times 10^4}{10^3}$ (j) $\frac{6.55 \times 10^{-2}}{10^{-3}}$
- **4.** Evaluate and then express $2(11 \times 10^3)^2$ in the form $A \times 10^n$ where $1 \le A < 10$ and n is an integer.
- **5.** Evaluate and then express $21(3.0 \times 10^2) \div$ (7.0×10^3) in the standard form.
- 6. Evaluate each of the following, giving your answer in standard form and the units in brackets.
 - (a) 78 microseconds + 512 nanoseconds (seconds)
 - (b) 583 picoseconds + 2.5 nanoseconds (seconds)
 - (c) 1.35 microseconds 47 nanoseconds (seconds)
 - (d) 4.57 centimetres 87 micrometres (metres)
 - (e) 0.75 millimetres 4.7 micrometres (metres)
 - (f) 25 nanometres 89 picometres (metres)

Use of Calculator

ere in 1 g of

ion in 1749 is

mples below show how indices and numbers in the standard form are expressed and evaluated a scientific calculator.

To find the value of a number raised to a power, we use the x^y key.

For example,

- to find 2^7 , press $2[x^y]$ 7 = to get the answer 128.
- to find 5.4³, press 5.4 x^y 3 = to get the answer 157.464.
- to find 4^{-2} , press $4 \left[x^{y} \right] \left[+/- \right] 2 \left[= \right]$ to get the answer 0.062 5.